ADVANCED HIGH EFFICIENT WASTE WATER FILTERATION PLANT

INTRODUCTION

Freudenberg Performance Material India Pvt Ltd

104, P.H.Road, Vellapanchavadi, Chennai-77

Production facility: Coated interlining fabric in Non woven and woven materials

Customer: all Garment manufacturers

INITIAL CONDITION

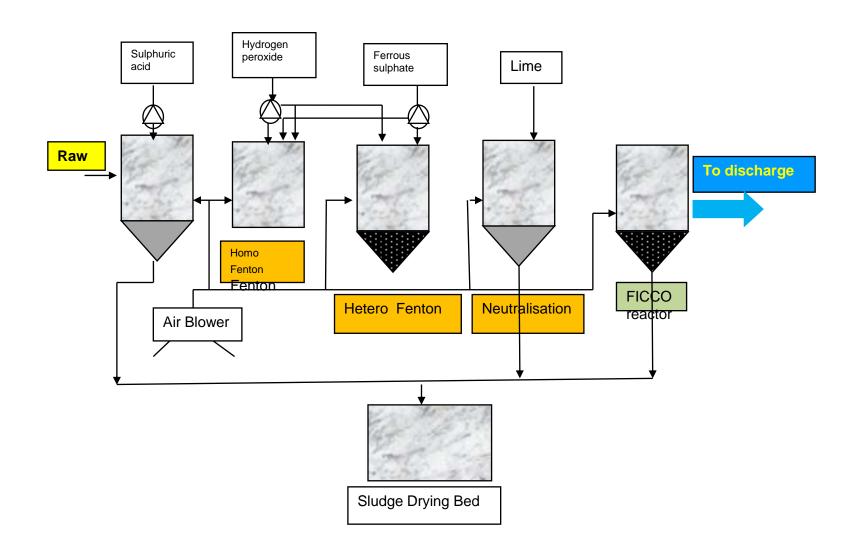
- > We are using 8 KL of water per day for our process
- ➤ It includes wash water and machine cooling circulation water
- ➤ All the waste water are collected in a 17 KL sump.
- From the first 17 KL sump water pumped into second 17 KL tank with the use of pump and cartridge filters
- ➤ With this method we were able to extract only 75% of solid waste particles and this is ineffective.

WASTE WATER TEST RESULTS

Parameters	Values
pН	5.76
COD, mg/L	14796
After 2 hrs settling COD , mg/L	3461
BOD, mg/L	6450
NH ₃ , mg/L	46
Total solids , mg/L	23260
Total Dissolved Solids , mg/L	380
Total Suspended Solids , mg/L	22880
ORP, mV	+91.8

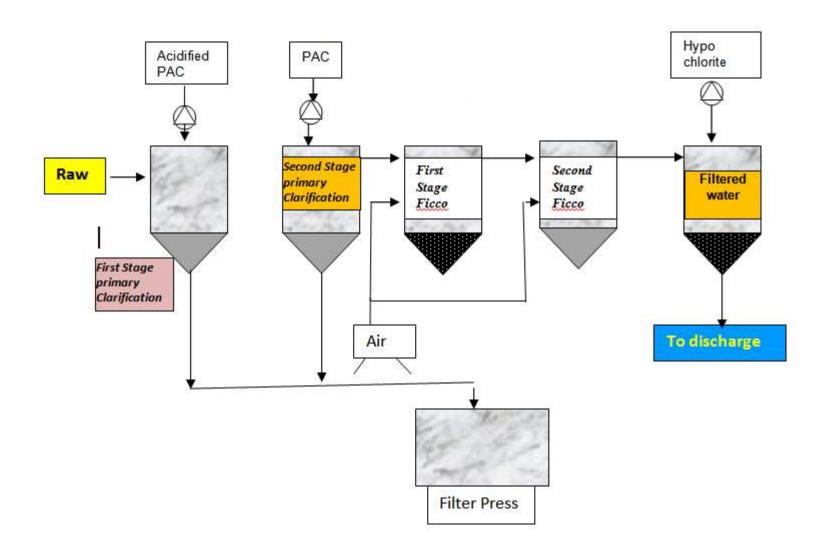
SUPPORT FROM IWMA

- ➤ I happened to attend one technical seminar organized by IWMA in the year 2014.
- > Dr G.Sekaran explained about the process of water treatment technology
- ➤ He explained about the impact to environment on letting out the untreated water
- ➤ He also offered FREE consultation towards setting up treatment plant.
- ➤ We are very much thankful to IWMA and Dr G.Sekaran for extending this support.



CLRI'S ROLE IN SETTING UP THE PLANT

- ➤ It took more than a year towards designing of plant.
- ➤ More than 10 samples were collected and tested in CLRI lab.
- ➤ Dr G.Sekaran designed the treatment process and took several trials at laboratory stage.
- ➤ He visited our factory towards locating the treatment plant.
- ➤ He gave complete report with treatment process and test results.
- > The final output water quality came up with acceptable level for reuse.

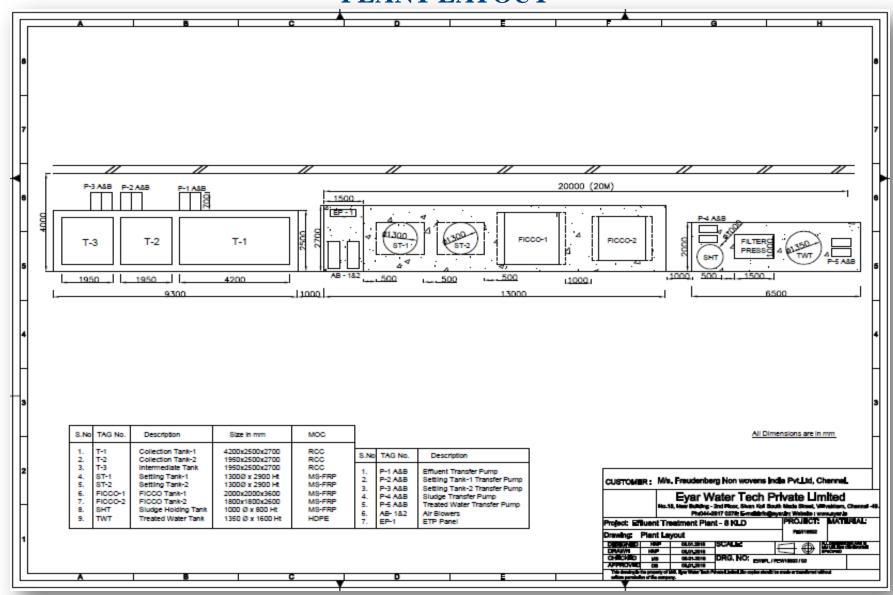


FIRST DESIGN

FINAL DESIGN

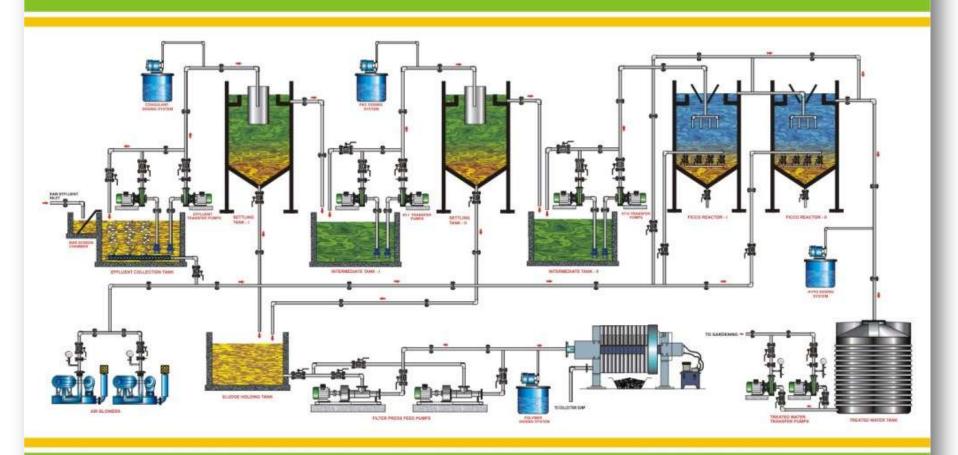
MANAGEMENT APPROVAL

- ➤ The estimation for plant worked out and submitted to management for approval.
- ➤ On obtaining the approval tender floated with three agencies and quote obtained
- ➤ M/s Eyar Water Tech Pvt Ltd was awarded the contract towards the erection and commissioning in Nov 2015.



PLANT COMMISSIONING

- > Erection was delayed due to heavy rain in Nov and Dec 2015.
- > In Jan 2016 we did the civil basement work.
- ➤ All equipment's were installed in Feb 2016.
- ➤ Plumbing work were carried out in March 2016.
- ➤ During April & May 2016 various trials were taken.
- ➤ On June 7th 2016 the plant was inaugurated.


PLANT LAYOUT

HYDRAULIC FLOW DIAGRAM

FREUDENBERG PERFORMANCE MATERIALS INDIA PVT LTD

ADVANCED WASTE WATER FILTRATION PLANT

DESIGNED BY :

CENTRAL LEATHER RESEARCH INSTITUTE

EXECUTED BY:

EYAR WATER TECH PRIVATE LIMITED

WATER TREATMENT PLANT

TEST RESULTS

RAW & TREATED EFFLUENT CHARACTERISTICS AT VARIOUS TREATMENT LEVELS

126/14/2005				
7.48	7.27	7.06	6.88	6.48
-38.3	+0.6	+0.6	+0.8	+0.7
6640	3872	696	384	16
190	128.6	67.8	44.04	7.7
29	15	8	6	3
38	18.0	13.0	10.0	8.0
8656	1985	1675	1030	760
980	890	825	795	705
7676	1095	850	235	55
3.416	0.532	0.357	0.112	0.028
0.9656	0.341	0.275	0.093	0.0165
	6640 190 29 38 8656 980 7676	6640 3872 190 128.6 29 15 38 18.0 8656 1985 980 890 7676 1095 3.416 0.532	6640 3872 696 190 128.6 67.8 29 15 8 38 18.0 13.0 8656 1985 1675 980 890 825 7676 1095 850 3.416 0.532 0.357	6640 3872 696 384 190 128.6 67.8 44.04 29 15 8 6 38 18.0 13.0 10.0 8656 1985 1675 1030 980 890 825 795 7676 1095 850 235 3.416 0.532 0.357 0.112

Water Sample Pictures

Settling tank-1

M/S. FREUDENERG PERFORMANCE MATERIALS INDIA PVT. LTD

RESULT

FUTURE PLAN

- > 50% of treated water will be sent to RO plant inlet towards recycling.
- ➤ Balance 50% will be sent to garden.
- From Jan 2017 100% treated water will be recycled.

THANK YOU

